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We review the current situation in the theory of superconducting and transport properties of
MgB2. First principle calculations of of the electronic structure and electron-phonon coupling are
discussed and compared with the experiment. We also present a brief description of the multiband
effects in superconductivity and transport, and how these manifest themselves in MgB2. We also
mention some yet open questions.

Is there anything of which one can say: “Look! This is something new”?
It was here already, long ago; it was here before our time.

Ecclesiastes, 1:10.

I. INTRODUCTION

Many of us remember that fabulous excitement that
reigned in physics world after the discovery of high-Tc
cuprates. Since then, we have become so familiar with
record-breaking temperatures of 90 K, 120 K, 160 K, that
it is worth recalling that 15 years ago not only the high-
est known superconducting temperature was meager 24
K, but it was also believed by many since early 70’s [1]
that this temperature is close to the theoretical limit for
electron-phonon superconductivity.

High-Tc superconductivity revolutionized our ap-
proaches both to theory and to experiment. However,
in the shadow of mysterious cuprates lower-temperature
superconductors were receiving relatively little attention.

This has been changed recently. In 2001 alone, be-
sides the report of 40 K superconductivity in the sim-
ple magnesium diboride, exciting cases of superconduc-
tivity coexisting with magnetism (ZrZn2), possibly in-
duced by magnetism (ε-Fe), or competing with mag-
netism (MgCNi3) were reported. While all these cases are
different and probably manifest quite different physics,
all of them indicate that the physics community turned
its face back to low-temperature superconductivity. And,
of course, MgB2 is the champion of the year, hands down.

Very similar to the high-Tc cuprates, immediately af-
ter its discovery [2] some authors described MgB2 as an
extreme case of conventional, “Eliashberg” superconduc-
tivity, an extremely lucky combination of the fortunate
parameters [3,4], while the others suggested variety of ex-
otic electronic mechanisms, possibly similar to cuprates
[5–9]. But the analogy stops here. Now, two years after
the discovery, we already have much better understand-
ing and much more universal consensus about the physics
of MgB2, than about cuprates. In fact, an agreement
emerges that it is, albeit still an electron-phonon super-
conductor, a case of genuinely novel physics, sufficiently
unusual to set it apart from all previous electron-phonon

superconductors [10].
One of the main factors that distinguishes MgB2 from

the high-Tc cuprates is that the electronic structure of
this materials is very well described by conventional
band-theoretical methods, which have been perfected in
the last decades to the level that allows unpreceden-
tally detailed first-principle calculations of electron and
phonon spectra, and of the electron-phonon calculations.
Excellent agreement of such ab initio calculations with
the experiment literally leaves hardly any room to play
with exotic, but hardly verifiable models, so popular in
the high-Tc world. In this Chapter we will try to present
a broad view on the physics of MgB2, as it currently
emerges from the first-principle calculation, and seems
to be fully supported by the experiment.

The Chapter is organized as follows: The electronic
structure of bulk MgB2 is disussed in Section 2, which
also deals with some experiments that give credit to the
calculated band structure. In Section 3 we discuss first
principles calculations of the phonon spectra and the
electron-phonon coupling (EPC). Section 4 is devoted to
the discussion of multiband effects in MgB2.

II. ELECTRONIC STRUCTURE

A. General description

MgB2 occurs in the AlB2 structure. Boron atoms
reside in graphite-like (honeycomb) layers stacked with
no displacement [11] forming hexagonal prisms with the
base translation almost equal to the height, a = 3.085
(3.009) Å and c/a = 1.142 (1.084) for MgB2 (AlB2).
These prisms contain large, nearly spherical pores oc-
cupied by Mg atoms. This structure may therefore be
regarded as that of completely intercalated graphite [12]
with carbon replaced by boron, its neighbor in the peri-
odic table. Furthermore, MgB2 is formally isoelectronic
to graphite. Therefore, chemical bonding and electronic
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properties of MgB2 are expected to have some similar-
ity to those of graphite and graphite intercalation com-
pounds, some of which also exhibit superconductivity. As
in graphite (Rintra=1.42 Å), the intralayer B–B bonds are
much shorter than the interlayer distance, and hence the
B–B bonding is strongly anisotropic. However, the in-
tralayer bonds are only twice as short as the interlayer
ones, compared to the ratio of 2.4 in graphite, allowing
for a significant interlayer hopping. For comparison, the
interatomic distance between nearest neighbors is 1.55 Å
in diamond and 1.4–1.45 Å in the C60 molecule.

In spite of a structural similarity to intercalated
graphite and, to some extent, to doped fullerenes, MgB2

has a qualitatively different and rather uncommon struc-
ture of the conducting states setting it aside from both
these groups of superconductors. The peculiar and (so
far) unique feature of MgB2 is the incomplete filling of
the two σ bands corresponding to strongly covalent, sp2-
hybrid bonding within the graphite-like boron layer. The
holes at the top of these σ bands manifest notably two-
dimensional properties and are localized within the boron
sheets, in contrast with mostly three-dimensional elec-
trons and holes in the π bands, which are delocalized over
the whole crystal. These 2D covalent and 3D metallic-
type states contribute almost equally to the total density
of states (DOS) at the Fermi level, while the unfilled
covalent bands experience strong interaction with longi-
tudinal vibrations in the boron layer.

The band structure of MgB2 had been reported long
before the discovery of superconductivity [13–16] and is
now known in very detail. The results discussed in this
Chapter were obtained using LMTO-ASA, full-potential
LMTO, or full-potential LAPW method. Computational
details may be found in respective original publications.
For MgB2, there is usually little difference between differ-
ent methods, in any event, none important for the qual-
itative discussions in this Chapter.
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FIG. 1. Bandstructure of MgB2 with the B p-character.

The radii of the hollow (filled) circles are proportional to the
π ( σ) character.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-0.4 -0.2 0 0.2 0.4 0.6 0.8

D
O

S
, s

ta
te

s/
eV

 s
pi

n

E-EF, eV

band 1
band 2
band 3
band 4

total

FIG. 2. Total density of states (DOS) and partial DOS for
MgB2. Bands 1,2 are σ bands, bands 3,4 are π bands

FIG. 3. Fermi surface of MgB2.

The energy bands, DOS and the Fermi surface of MgB2

are shown in Figs. 1, 2 and 3. As expected, the bands are
quite similar to those of graphite with three bonding σ
bands corresponding to in-plane spxpy (sp2) hybridiza-
tion in the boron layer and two π bands (bonding and
antibonding) formed by aromatically hybridized boron
pz orbitals. Both σ and π bands have strong in-plane
dispersion due to the large overlap between all p orbitals
(both in-plane and out-of-plane) for neighboring boron
atoms. The interlayer overlaps are much smaller, espe-
cially for pxy orbitals, so that the kz dispersion of σ bands
does not exceed 1 eV. On the other hand, in contrast to
intercalated graphites, two of the σ bands are filled in-
completely. Together with weak kz dispersion this results
in the appearance of two nearly cylindrical sheets of the
Fermi surface (see Fig. 3) around the Γ–A line. As we will
see below from the analysis of the charge density distri-
bution, these unfilled σ bands with boron pxy character
fully retain their covalent structure. Conducting cova-
lent bonds represent a peculiar feature of MgB2 making
it an exotic compound probably existing on the brink of
structural instability.

It is seen in Fig. 3 that the π bands form two planar
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honeycomb tubular networks: an antibonding electron-
type sheet centered at kz = 0 (red) and a similar,
but more compact, bonding hole-type sheet centered at
kz = π/c (blue). These two sheets touch at some point
on the K-H line. The hole-type sheet is close to an elec-
tronic topological transition (ETT) at the M point cor-
responding to the breakdown of the tubular network into
separate starfish-like pockets (at 0.25 eV above EF ).

In order to examine the relation between the band
structure of MgB2 and that of graphite in more detail
one can compare the following hypothetical sequence of
intermediate materials: carbon in the ‘primitive graphite’
(PG) lattice with no displacement between layers as in
MgB2, using graphite lattice parameters; boron in the
PG lattice with a as in MgB2 and c/a as in graphite;
boron in the PG lattice with a and c/a as in MgB2; LiB2

in the same structure; MgB2 itself. The results of some
of these calculations [17,18] are shown in Fig. 4.
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FIG. 4. Band structures of: (a) top left: primitive (AA
stacking) graphite (PG), a = 2.456Å, c/a = 1.363; (b) top
right: PG boron, a = 3.085Å, c/a = 1.142 (as in MgB2); (c)
bottom left: LiB2 in MgB2 structure, same a and c/a; (d)
bottom right: MgB2, same a and c/a. Energy is in eV rel-
ative to EF . The order of occupied bands in the Γ point is
σ bonding with boron s character, π bonding with boron pz
character, and σ bonding with boron pxy character (double
degenerate).

The band structure of PG carbon shown in Fig. 4a is
very similar to that of graphite [19] with the appropriate
zone-folding for a smaller unit cell. (This is quite natural
because of the weak interlayer interaction.) Boron in the
same lattice (not shown) has nearly identical bands with
the energies scaled by the inverse square of the lattice pa-
rameter, in agreement with canonical tight-binding scal-
ing [20]. Fig. 4b shows the natural enhancement of the
out-of-plane dispersion of the π bands when the interlayer
distance is reduced. Figs. 4c and 4d demonstrate that ‘in-

tercalation’ of boron by Li or Mg produces a significant
distortion of the band structure, so that the role of the
intercalant is not simply donating electrons to boron’s
bands (which would recover the band structure of PG
carbon shown in Fig. 4a). The main change upon inter-
calation is the downward shift of the π bands compared
to σ bands. For Li this shift of ∼1.5 eV is almost uniform
throughout the Brillouin zone. Replacement of Li by Mg
shifts the π bands further, but this shift is strongly asym-
metric increasing from ∼0.6 eV at the Γ point to ∼ 2.6 eV
at the A point. In addition, the out-of-plane dispersion
of the σ bands is also significantly enhanced. In LiB2 the
filling of the bonding pxy bands is nearly the same as in
PG boron, while in MgB2 the Fermi level shifts closer to
the top of these bands.

The lowering of the π bands in MgB2 compared to
PG boron is due to stronger interaction of boron pz or-
bitals with ionized magnesium sublattice compared to
pxy orbitals. This lowering is greater at the AHL plane
compared to the ΓKM plane, because the antisymmetric
(with kz = π/c) overlap of the boron’s pz tails increases
the electronic density close to the magnesium plane where
its attractive potential is the strongest.

FIG. 5. Pseudocharge density contours obtained in
FLMTO. The unit cell is everywhere that of MgB2. Dark-
ness of lines increases with density. (a) MgB2 in (0002) plane
passing through B nuclei; (b) MgB2 in (1000) plane pass-
ing through Mg nuclei at each corner of the figure. B nu-
clei occupy positions (1/3,1/2) and (2/3,1/2) in the plane of
the figure. The integrated charge of the unit cell is 8. (c)
(1000) plane, difference in smoothed density, MgB2 minus
NaB2. The integrated charge of the unit cell is 1. (d) (1000)
plane, difference in smoothed density, MgB2 minus PG car-
bon. The integrated charge of the unit cell is 0. In (c) and
(d), dotted lines show negative values.

The nature of bonding in MgB2 may be understood
from the charge density (CD) plots [18] shown in Fig. 5.
As it is seen in Fig. 5a, bonding in the boron layer is
typically covalent. The CD of the boron atom is strongly
aspherical, and the directional bonds with high CD are
clearly seen (see also Ref. [16]). The CD distribution in
the boron layer is very similar to that in the carbon layer
of graphite [19]. This directional in-plane bonding is also
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obvious from Fig. 5b showing the CD in the cross section
containing both Mg and B atoms. However, Fig. 5b also
shows that a large amount of valence charge does not par-
ticipate in any covalent bonding, but is rather distributed
more or less homogeneously over the whole crystal. Fur-
ther, Fig. 5c shows the difference of the CD of MgB2 and
that of hypothetical NaB2 in exactly the same lattice.
Not only does it show that one extra valence electron is
not absorbed by boron atoms but that it is rather delo-
calized in the interstitials; it also shows that some charge
moves away from the boron atoms and covalent in-plane
B-B bonds. Fig. 5d shows the CD difference between the
isoelectronic compounds MgB2 and PG carbon (C2). In
MgB2, the electrons see approximately the same exter-
nal potential as in C2, except that one proton is pulled
from each C nucleus and put at the Mg site. It is evi-
dent that the change C2→MgB2 weakens the two-center
σ bonds (the charge between the atoms is depleted) and
redistributes it into a delocalized, metallic density.
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FIG. 6. Plasma frequencies for σ and π bands.

A numerical reconstruction of the electronic charge
density from the synchrotron radiation data for a pow-
der MgB2 sample [21] supports this general picture. The
charge density found for 15 K is, in fact, very similar to
that in Fig. 5b and shows all the important features dis-
cussed above including the distinct covalent bonds within
the boron sheets, the strongly ionized Mg, and the delo-
calized charges in the interstitials. Further, the Fourier
maps obtained [11] for the single crystals also clearly
show the covalent sp2 hybrids in the boron layer and
no covalent bonding between B and Mg atoms.

Thus, one can say that MgB2 is held together by
strongly covalent bonds within boron layers and by de-
localized, ‘metallic-type’ bonds between these sheets. A
peculiar feature of this compound is that electrons par-
ticipating in both of these bond types provide compa-
rable contributions to N . This distinguishes MgB2 from
closely related graphites where covalent bonds in the car-
bon layers are always completely filled, while the nearly
cylindrical parts of the Fermi surface commonly found in

those compounds are formed by carbon-derived π bands
which are much less 3D that the corresponding bands in
MgB2 [22].

Because of the coexistence of two different types of con-
ducting states, one needs to see the contributions to the
total DOS and transport properties from separate sheets
of the Fermi surface originating from 2D covalent and 3D
metallic-type bonding. This decomposition is shown in
Fig. 2 for the DOS and in Fig. 6 for the in-plane (xx) and
out-of-plane (zz) components of the plasma frequency
ω2
pl α = (e2/2π2)

∫
v2
αδ[ε(k) − EF ]dk, where vα is the

α-component of the Fermi velocity. The 3D (metallic-
type bonding) and cylindrical (covalent bonding) parts
of the Fermi surface contribute, respectively, about 58%
and 42% to N(EF ). If the σ Fermi surfaces were ideal
cylinders, N(E) for these bands would have a step-like
singularity at some 0.5 eV above EF . This is broadened
by a nonzero z-dispersion. The hole π-band has a 3D
van Hove singularity in the same range of energies, while
the electron-like π-band has a DOS which is rather flat
around EF . π-bands contribute about 80% to the to-
tal ω2

pl, and thus, given the same relaxation rate for all
bands, to total conductivity. While the total conductiv-
ity is more or less isotropic, the σ−band conductivity is,
as expected, highly anisotropic.

B. Experimental probes of electronic structure

It is well known that in some materials conventional
band structure calculations do not reproduce the exteri-
mental one-electron excitation spectra with sufficient ac-
curacy. These case usually involve strongly correlated
materials (cuprates, heavy fermions, etc) with localized
d- or f−electrons. On the first glance, MgB2 does not
seem to belong to any of such classes. However, it was
important to verify experimentally how reliable are LDA
calculations in this compound.

One of the most popular experimental probes of elec-
tronic band structure is angular-resolved photoemission
spectroscopy (ARPES), particularly in view of remark-
able progress achieved in the last decade. In spite of
the fact that ARPES probes only a very thin surface
layer and is therefore not always representative of the
bulk electronic structure, first experiments [23] show an
exceptional agreement between the theory and the exper-
iment in the whole studied energy range. Both σ bands
and π band were observed along the ΓM direction, as
predicted by the calculations. Along ΓK direction only
one out of the two predicted σ bands was observed; the
authors speculated that the single experimental feature
in this region may result from the superposition of the
two bands. On the other hand, the fact that the band
in question has different symmetry along the two mea-
sured directions may contribute to the selection rules. In
addition, the analysis of the electronic states centered
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around the Γ point revealed that this feature originated
from a surface electronic state, which is in good overall
agreement between APRES and theoretical results for
the Mg-terminated surface [24]. Unfortunately, to the
best of our knowledge, surfaces with partial Mg cover-
age, say, 50%, were not studied theoretically, although
this is the most likely termination. Possibly even better
agreement can be achieved if such termination will be
included in the calculations.

A classical probe of the Fermi surface properties are
quantum oscillations, e.g., de Haas-van Alphen (dHvA)
effect. Such measurements have been reported [25].
Three dHvA frequencies were clearly resolved in data
from Ref. [25], corresponding to two distinct sheets of
the Fermi surface. A comparison of the calculated fre-
quencies [26–28] with the experimental data shows excel-
lent agreement. The discrepancies with the theory are
less than 300 T which is only 0.2% of the area of the
hexagonal BZ. The detailed angular dependence of F1,
F2 and F3 has been calculated in Ref. [26] and compares
favorably with the experimental results. The ratio of ex-
perimental and theoretical effective masses provides mass
renormalization, presumably of electron-phonon origin,
which appears to be 1.08-1.2 for the inner σ cylinder and
0.40 for the π sheet. This is to be compared with the
calculated numbers of 1.25 [10], 1.57 [29], ∼1.1 [30], and
0.47 [10], 0.50 [29], ∼0.33 [30]; a rather good agreement.
Overall, ARPES and dHvA experiments, taken together,
fully support LDA calculations, leaving hardly any room
for many body renormalization of the band masses and
velocities, apart from the EPC renormalization.

It is worth noting that for the π orbit it was pos-
sible to estimate the local Stoner enhancement factor.
It appears that LDA calculations underestimate the ex-
change splitting induced by a magnetic field by about
50%. The reason for this discrepancy is not clear
yet. On the other hand, electron spin resonance mea-
surements [31,32] found electronic spin susceptibility of
(2.0 − 2.3) × 10−5emu/mole, corresponding to a Stoner
renormalization of 50% less than calculated [33,34].

Since both ARPES and DHVA spectroscopy in MgB2

are described in detail in other Chapters of this book,
we shall refer the reader to those, and will concentrate in
the following on another probe of the electronic structure
near the Fermi level, namely nuclear magnetic resonance
(NMR).

NMR spectroscopy measures two electronic structure
related quantities, the Knight shift, K, and the spin-
lattice relaxation rate, 1/T1T . The former is related to
the uniform spin susceptibility, the latter to the local
susceptibility at a nucleus. Both are linked to the DOS
at the Fermi level, but in an indirect way involving hy-
perfine interactions. Therefore extracting reliable infor-
mation about the electronic structure is usually possible
only if the corresponding calculations of the hyperfine
field are available.
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FIG. 7. Boron 11(1/T1T) for Mg1−xAlxB2 as a function
of Al-doping. Lines show the ab initio calculated plots from
Refs. [17,18]

For MgB2, this is the case. Several experimental
groups reported 1/T1T [35–37] and K for the B site
[36,37], which is of particular interest because of the role
that B states play in superconductivity. Two groups re-
ported first principles calculations for 1/T1T [33,34] and
for K [34]. Importantly, it appears that NMR in MgB2

not only probes B electrons, but it also probes differ-
ently σ and π bands. Indeed, since σ bands are formed
by the px and py states, they can form px ± py combi-
nations, which have nonzero orbital moment. One can
therefore expect considerable orbital contribution to the
relaxation rate. Indeed, calculations show [33,34] that
the orbital mechanism dominates over the two others,
the Fermi-contact and the spin-dipolar, mechanisms in
the spin-lattice relaxation. On the contrary, for the Mg
nucleus the dominant relaxation mechanism is, as usu-
ally, the Fermi-contact interaction, which also dominates
the B and Mg Knight shift [34].

The results of the calculations agree well with the
experiment. The experimental numbers for 1/T1T on
11B are in a range of (5.6 − 6.1) × 10−3/(K·sec). Cal-
culations using bare susceptibility produce numbers of
5.1×10−3/(K·sec) [33] and 3.7×10−3/(K·sec) [34]. This
numbers are subject to many body renormalization.
Renormalized values involve additional assumptions; in
Ref. [33] the renormalized relaxation rate was estimated
to be 8.1×10−3/(K·sec), while Ref. [34] gives a range
of(4.3-5.9) ×10−3/(K·sec). As regards the Knight shift,
unfortunately, the spread of the experimentally obtained
values is still too large to allow for a quantitative com-
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parison with the calculations.
As mentioned above, the NMR relaxation rate is very

sensitive to the relative amount of σ and π states, which
implies a nontrivial dependence on the filling of the σ
bands. This was indeed calculated in Ref. [18] for MgB2

doped with Al (whose primary effect is to fill σ hole
states). In Ref. [38] the theoretically predicted in Ref.
[18] tendencies were experimentally verified for the entire
Mg1−xAlxB2 system of alloys. Very impressive agree-
ment was obtained (Fig.7).

III. ELECTRON-PHONON COUPLING

A. Standard formulas

Standard description of the EPC in metals is some-
times referred to as the Migdal-Eliashberg theory. We
are not going to review this theory here, as it can be
found in many excellent texts, but will briefly remind
the basic formulas of this theory. The primary no-
tion of this formalism is that of the linear EPC ver-
tex, gk,k+q,ν = 〈k|dV/dQq,ν |q〉, where dV/dQq,ν is the
derivative of the crystal potential with respect to the nor-
mal phonon coordinate. k,k + q stand for the electron
wave vectors, and q, ν for the wave vector and the mode

index of the phonon whose interaction with the electrons
is being described. In other words, gk,k+q,ν is the prob-
ability of an electron to be scattered from the state |k〉
into the state |k + q〉 by the phonon (q, ν). Migdal the-
orem (which holds for MgB2) states that this vertex is
not renormalized by higher order processes. It does not
state, however, as discussed below, that anharmonic cor-
rections to the phonon spectra or nonlinear vertices like
〈k|d2V/dQ2

q,ν |k + q〉 are necessaruly negligible.
gk,k+q,ν , if properly integrated over all possible vir-

tual electron-hole pairs, defines the phonon self energy.
In particular, its imaginary part, the phonon linewidth,
is given by

γq,ν = 2πωq,ν

∑
k

|gk,k+q,ν |2δ(εk−EF )δ(εk+q−εk−~ωq,ν).

In this formula, the right-hand side does not explicitely
depend on ωq,ν (the prefactor cancels the correspond-
ing factor in |gk,k+q,ν |2). Sometimes a related quantity,
the EPC constant for a given mode, is used: λq,ν =
γq,ν/πN(EF )ω2

q,ν . One may note that this quantity is
strictly zero for optical zone center (q = 0) phonons;
however, a related constant can be introduced, λZZν =
[2N(EF )/ων ]

∑
k |gk,k,ν |2, and gk,k,ν is obviously related

to the deformation potential.

When integrated over all phonon modes and corresponding intermediate electron states, gk,k+q,ν defines the electron
self-energy, or mass renormalization (m∗/m)k:(

m∗

m

)
k

− 1 =
∑
q,ν

2
N(EF )ωq,ν

|gk,k+q,ν |2δ(εk − EF )δ(εk+q − εk − ~ωq,ν)

Finally, when integrated over all phonons with given frequency and over electronic states at the Fermi level, it
defines the EPC spectral function, which determines superconducting properties of a single-gap superconductor,

α2F (ω) = (1/2)
∑
q,ν

ωq,νλq,νδ(ω − ωq,ν),

which can be broken into n× n matrix separating the interband pairing interaction from the intraband one

α2F (ω)ij = (1/Ni(EF ))
∑
q,ν

∑
k∈i,k+q∈j

|gk,k+q,ν |2δ(εk+q − εk − ~ωq,ν)δ(ω − ωq,ν),

where i, j label different electronic bands or group of bands, e.g., i = σ, π.

B. First principle calculations

In the first publication [3] following the discovery of
SC in MgB2 the strength of the EPC was estimated and
it was suggested that MgB2 is a standard BCS super-
conductor, where coupling with the B phonons is the
driving force for superconductivity. A substantial B, but
small Mg isotope effects were predicted. Both predictions
were confirmed by the experiment [39,40]. The relevant
phonons were soon identified in Ref. [4] as two optical

E2g modes, which was confirmed by subsequent full-scale
calculations of EPC.

Because of pronounced dissimilarity between different
electron groups and different phonon modes it is unavoid-
able for understanding superconductivity in MgB2 to cal-
culate EPC spectral function α2F (ω) including all bands
and all phonons on the same footing. By now, at least
four groups have claimed to have done this from the first
principles [10,29,30,41]. Three of these [10,30,41] were
based on pseudopotential band structure calculations;
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one [29] utilized a full-potential LMTO method. Three
used the linear response formalism to compute phonon
spectra and electron-phonon matrix elements [10,29,41];
one [30] was based on frozen phonon calculations at sev-
eral high-symmetry point with a subsequent interpola-
tion onto a finer mesh. The last work also used an an-
harmonic correction to the phonon frequencies, which the
other three works did not include (Ref. [10] provided a
rough estimate of the effect). The results are compared
in Table I, and the E2g frequencies are compared with
selected frozen phonon calculations.

The last two columns in Table I show isotropic, or
thermodynamic EPC constant; as discussed later, it is

probably not directly relevant to superconductivity, but
it defines the average electronic mass renormalization,
and thus the renormalization of specific heat. The latest
exteriments [42–44] (the latter two on single crystals),
reported for the electronic specific heat coeffiient the val-
ues of γ =2.5, 2.3, and 3.5 mJ/mole·K2, respectively (the
discrepancy may be partially related to different temper-
ature ranges used in fitting). The unrenormalized DOS
(Table I) corresponds to γ =1.67 mJ/mole·K2, yielding
λ from 0.4 to 1.1. While clearly inconclusive, these num-
bers are equally consistent with all entries in the Table
I.

TABLE I. Electron-phonon calculations and selected calculations of other relevant parameters, as reported in the literature.

ωharmE2g , cm−1 ωanharmE2g , cm−1 ωlog, cm−1 N(EF ), st./Ry spin λharm λanharm

Ref [29] 540(a) 504 4.83 0.87
Ref [41] 536 487 0.73
Ref [10] 450 4.83 0.77 0.70
Ref [30] 506 612 479 4.83 0.73 0.61

FPLAPW [10] 536(a) 590 4.80

(a)updated results with a better k-point convergence (J. Kortus, private communication)

As regards the EPC there is a noticeable discrepancy
between different calculations, despite an overall agree-
ment. Part of that may be due to different band structure
techniques, but the difference is too large to be ascribed
to the band structure difference alone (note nearly perfect
agreement between the calculated DOS in Table I). At
least part of the difference comes from the difference in
the calculated phonon frequencies. Direct calculations of
the phonon frequencies by the frozen-phonon technique
are generally more reliable and less sensitive to the the
size of the basis set than linear response methods. All-
electron calculations are usually more reliable than pseu-
dopotential calculations. Therefore we included in the
Table the results of full-potential LAPW calculations. In
view of high sensitivity to the phonon spectra, the fact
that only a handful of high-symmetry points were treated
from the first principles in Ref. [30] is a weak point of this
work.

However, the differences in the phonon spectra do not
explain the discrepancy in the value of the calculated
EPC constants. To understand where this discrepancy
possibly originates, let us note that if the σ-band Fermi
surfaces were ideal cylinders (which they nearly are), the
EPC for the E2g phonons would have two Kohn-like di-
vergencies [45]. Indeed, it is easy to show that in this
case the partial EPC constant for a E2g phonon with a
wave vector q, λq, is given by the expression

λq ≈
〈g2〉

2πEFωqx
√

1− x2

where 〈g2〉 is the average EPC matrix element, ωq ≈ ω0

is the phonon frequency, and x = q/2kF . Note that λq
is inversely proportional to the Fermi energy, and there-
fore to the number of phonons with q < 2kF , so that
the total λ given by the sum over all E2g phonons does
not depend on the size of the Fermi surface. This is, of
course, simply a reflection of the fact that the DOS of a
2D band does not depend on the Fermi energy, and the
total λ is, essentially, just total DOS times the average
squared EPC matrix element.

0 0.2 0.4 0.6 0.8 1

   
   

 λ
, a

rb
. u
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FIG. 8. Dependence of the partial EPC constant on the
phonon wave vector for a cylindrical Fermi surface. Note sin-
gularities at small q and at q = 2kF . Three curves correspond
to three different kF , but all integrate to the same total λ.

This function is plotted in Fig.8. Essentially, in the
calculations like Refs. [10,29,30,41] one needs either to in-
tegrate these singularities numerically or apply to them
a special analytical treatment. The first approach was
employed in Refs. [29,41,30]. In particular, in Ref. [29] a
special care was taken to assure that the singularity was
properly integrated. In Ref. [10] the small q singularity
was treated analytically; but not the high-q one. Later
estimates [I.I. Mazin, unpublished] show that the discrep-
ancy between Refs. [29] and [10] is substantially reduced
when the high-q singularity is treated analytically as well,
although the total λ remains slightly smaller that in Ref.
[29].

C. Phonon renormalization, anharmonicity, and
nonlinear coupling

In this Section we will address several seemingly un-
related, but in fact strongly connected issues. As men-
tioned above, calculated frequencies of the E2g phonon
show strong anharmonicity [30]. At the same time, cal-
culations show this phonon to soften abruptly around
q < 2kF , where kF is the Fermi vector for the σ bands
[29,41]. Finally, it was noticed that the matrix elements
for quadratic EPC, gquad = 〈|δ2V/δQ2|〉 are anoma-
lously large compared with that for the linear coupling,
glin = 〈|δV/δQ|〉 [10,46].

FIG. 9. Examples of the processes contributing to the
phonon self energy in the linear (top) or quadratic (bottom)
approximations for the EPC.

To understand these effects we should recall that in
the linear coupling regime the effect of the electronic
screening on the phonon self-energy (Fig.9, top) is de-
fined by the same process that determines the contribu-
tion of the corresponding phonon to the total supercon-
duction EPC constant. Indeed, the imaginary part of the
phonon self energy (phonon linewidth) is related to λq as
γq = πN(EF )ω2

qλq. At the same time, the real part of
the same self-energy defines phonon softening. Only the
phonons with q < 2kF can couple with the σ−electrons,
therefore they and only they become screened and soft-
ened by them. For a zone-center phonon, there is a quani-
tative measure of this softening [47]:

∆ω2 = −4ω〈g2〉N(EF ), (1)

where the right-hand side does not depend on ω. This
quantity was calculated in Ref. [10] to be [48] approxi-
mately 2× 0.51ω2 ≈ 1.02 ∗ 5032 cm−2. This corresponds
to a bare frequency of 715 cm−1. In the same work, the
frequency of the E2g phonon away from the Γ point was
calculated to be around 640 cm−1. Softening from 715 to
640 cm−1 must therefore be coming from the screening
due to the π-electrons. Given high sensitivity of phonon
frequencies to the k-mesh convergency, one can probably
say that first principle calculations give a softening due
to σ-electrons of 75-100 cm−1.

Eq. 1 is based on the linear approximation, that is,
EPC is proportional to the first derivative with respect
to the phonon coordinate. This is, however, not an
easily justifieable approximation in case of MgB2: as
we saw above, the second-order EPC vertex, gquad, is
anomalously large. In this case one has to consider in
the phonon renormalization processes corresponding to
creation/annihilation of an electron-hole pair, associated
with emission/absorption of two E2g phonons, as illus-
trated in Fig.9 (bottom). Note that the corresponding
diagrams are temperature dependent, therefore produc-
ing intrinsically anharmonic phonons, as observed in the
frozen phonon calculations. Quadratic EPC is a long
known phenomenon (see, e.g., Refs. [49–51]), although
most authors concentrated on its effect on superconduc-
tivity and mass renormalization, rather than on phonon
frequencies.

In order to gain a better insight into the interrela-
tion between the anharmonicity, quadratic coupling, and
frozen phonons, let us look for the reason for the anoma-
lously large quadratic vertex. One can conviniently write
the dispersion of the two σ-bands as εk = uk± vk, where
both u and v are quadratic functions of k, and v = 0 at
k = 0. The function u describes the average dispersion
neglecting hybridization between the two bands, while v
describes the hybridizations. Both functions depend on
the frozen phonon coordinate, but in a different way: for
a given point k, u is an odd function of the phonon coor-
dinate, duk/dQ 6= 0; however, any symmetry lowering in-
creases hybridization between the two σ bands, therefore
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v is an even function of Q, dvk/dQ = 0, d2vk/dQ
2 6= 0.

At the Γ point du/dQ = 0, therefore only nonlinear
coupling remains; when going away from the Γ point,
a nonzero linear component appears (which is responsi-
ble for a large calculated EPC in Refs. [29,41,10,30]), and
quadratic coupling gradually vanishes. Correspondingly,
the smaller is the number of holes in the σ band the
stronger are anharmonic effects in the phonon frequency.

The same can be seen from the point of view of the
frozen phonon calculations. These amount to calculating
total energy of a crystal with fixed ionic displacement
comparable with, or smaller than the amplitude of the
zero-point oscillations. This energy remains more or less
harmonic as long as the frozen displacement does not in-
cur any change in the Fermi surface topology. This “crit-
ical” displacement becomes smaller when the σ-pockets
get filled, therefore yielding more and more anharmonic
phonons, in perfect agreement with the reasoning above.

The interrelated nonlinearity and anharmonicity have
competing effects on superconductivity. Anharmonic
hardening of the phonon reduces effective EPC constant
(TableI), while two-phonon exchange provides an ad-
ditional contribution to α2F (ω) at frequencies roughly
twice the frequency of the E2g phonon. The latter ef-
fect was never reliably calculated. Estimates of Yildirim
et al [46] allow one to assume that nonlinear EPC in-
creases the coupling constant for σ bands by at least 5%,
although this is probably the lower estimate.

IV. MULTIBAND EFFECTS IN
SUPERCONDUCTIVITY

Already in the first months after the discovery of super-
conductivity in MgB2 experiments appeared that were
not consistent with a conventional strong coupling su-
perconductivity scenario. It was observed that the crit-
ical field [52], specific heat [53] and tunneling [54] mea-
surements are easier to explain if two gaps are assumed
instead of one. Liu et al [10] proposed, based on elec-
tronic structure and EPC calculations, that there are, in
fact, two distinctive gaps associated with σ- and π-Fermi
surfaces. This “two-gap” model gained popularity, and
it became clear that the EPC calculations needed to be
performed separately for the two sets of bands.

With this in mind, the results of Ref. [10] and subse-
quently of Ref [29] were broken in a 4x4 EPC coupling
matrix, as well as in a 2x2 matrix (TableII). Ref. [30]
does not report the corresponding 2x2 matrix, but it can
be reasonably accurately restored from the figures in that
paper. Detailed calculations [30] show that in the ideally
clean limit the variation of the order parameter, apart
from the σ − π difference, are less than 10%. As dis-
cussed below, such a variation cannot exist in real sam-
ple even with an extremely small impurity concentration,

therefore it is of little interest to use more than 2x2 EPC
matrix in any physically relevant discussion.

A. General Theory

The famous BCS formula is derived in the assumption
that the pairing amplitude (superconducting gap, order
parameter) is the same at all points on the Fermi surface.
The variational character of the BCS theory makes one
think that giving the system an additional variational
freedom of varying the order parameter over the Fermi
surface should always lead to a higher transition temper-
ature. This problem was solved first in 1959 by Matthis,
Suhl, and Walker [56] and by Moskalenko [57]. The gen-
eral solution was given later by several authors (probably
in the most developed form by Allen and collaborators
[58]), and for our purpose can be written as

∆(k) =
∫

Λ(k,k′)∆(k′)F [∆(k′), T ]dk′, (2)

where summation over k implies also summation over
all bands crossing the Fermi level. The matrix Λ char-
acterizes the electron-phonon interaction, and the tem-
perature dependence is given by the function F =∫ ωD

0
dE tanh(

√
E2+∆2

2T )/
√
E2 + ∆2 . For the purpose of

this paper it suffices to use the discrete (also called dis-
joint) representation, where it is assumed that the order
parameter ∆ varies little within each sheet of the Fermi
surface, while differing between the different sheets:

∆i =
∑
j

Λij∆jF (∆j , T ), (3)

where i, j are the band indices and Λ is an asymmet-
ric matrix related to the symmetric matrix of the pair-
ing interaction, Λij = VijNj , where Ni is the contri-
bution of the i-th band to the total DOS. It can be
shown that in the BCS weak coupling limit the criti-
cal temperature is given by the standard BCS relation,
kTc = ~ωD exp(−1/λeff ), where λeff is the largest eigen-
value of the matrix Λ. The ratios of the individual order
parameters are given by the corresponding eigenvector.
Note that although the matrix Λ is not symmetric, its
eigenvalues are the same as those of the symmetric ma-
trix
√
NV
√
N .

TABLE II. 2x2 EPC matrices in different calculations.

Ref. [10] Ref. [55] Ref. [30]a

0.96 0.17
0.23 0.29

1.02 0.16
0.21 0.45

0.78 0.11
0.15 0.21

a Obtained by integrating λ(k,k′) distribution plots from
Ref. [30].
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The mass renormalization parameters for each band
can be constructed from the matrix Λ: λi =

∑
j Λij .

These λi define, among other things, the de Haas-van
Alphen thermal masses. Finally, the renormalization of
the specific heat is given by the weighted average of λi,
λ̄ =

∑
iNiΛij/Ntot =

∑
ij NiΛijNj/N, which is also the

“Eliashberg” coupling constant determining the super-
conductivity in the isotropic limit, where all order pa-
rameters are constrained to be the same. One can show
that λ̄ ≤ λeff , the equality being achieved when and
only when all elements of the V matrix are the same (the
relative magnitude of Ni is irrelevant). Physically this
result is obvious: the BCS theory can be formulated as a
variational theory. Therefore a bigger energy gain, and a
higher critical temperature, can be achieved if more vari-
ational freedom is provided, e.g., by allowing different
order parameters in the different bands.

B. Impurity scattering

In this Section we will ouline nontrivial effects related
to impurity scattering in a multigap superconductor. The
discussion will mostly follow Ref. [59], where more details
can be found. In the Born approximation, and close to
Tc, the problem can be solved analytically. It appears
that nonmagnetic impurities suppress superconductivity
in much the same way, as magnetic ones do in a regu-
lar superconductor, however, only the interband impu-
rity scattering has a pair-breaking effect. In the weak
nonmagnetic scattering limit, for two bands, the Tc sup-
pression is

δTc
Tc

= −πγ12

8kTc
(∆1 −∆2)(∆1N2 −∆2N1)

(∆2
1 + ∆2

2)N2
, (4)

where γ12 ≡ γ21N2/N1 is the interband scatering rate.
Note that the Tc suppression is linear in γ12. This for-
mula also gives us a clue about what is a weak and what
is a sttrong scattering in the specific case of MgB2 : small
scattering is when γ12 � (δ∆2/∆̄2)Tc, where δ∆ is the
variation of the gap between the bands, and ∆̄ is the av-
erage gap. The ratio of the σ− and the π− band gaps is,
experimentally and theoretically, of the order of 3. The
densities of states are comparable. Therefore a Tc sup-
pression of 1 K would require an interband scattering rate
of the order of 1 meV. It is a fortunate and rather unex-
pected coincidence that the symmetry of the electronic
states conspire in such a way as to make the interband
scattering rate quite small even in rather dirty samples
[60]. Only because of this conspiracy we are actually able
to observe two distinctive gaps in this compound.

On the other hand, the variation of the gap within each
of the two band systems, calculated in Ref. [30], which is
of the order of 7%, cannot survive a σ − σ impurity or
phonon scattering stronger than ∼ 0.01 meV, and there-
fore is unobservable in samples of any imaginable quality.

In the strong interband scattering limit a complete
isotropization of all Fermi surfaces takes place. This limit
is achieved [59] when the interband scattering rate be-
comes larger than the relevant phonon frequency, in our
case, 600 cm−1 ≈ 75 meV. Then the two gaps merge
to one, the isotropic BCS gap, and the critical temper-
ature drops to it isotropic value. Strong coupling cal-
culations of Ref. [30] predict the latter to be around 19
K. Indeed, recent experiments on irradiated samples [61]
demonstrated a reduction of the gap ratio by 40%, ac-
companied by a Tc reduction by 22%. One should note,
however, that the results of Ref. [61], while qualitatively
consistent with the prediction of the two-band model,
quantitatively do not agree with them. Similar results
were reported in Ref. [62].

C. Strong coupling and Coulomb pseudopotential

It is relatively straightforward to extend the theory of
multiband superconductivity beyond the weak coupling
BCS model [58]. Qualitatively one can easily understand
the main effect of the strong coupling by recalling the
McMillan equation:

kTc =
~ωlog

1.2
exp

[
−1.02(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (5)

Qualitatively, this equation can be understood as renor-
malized BCS equation, kTc = ~ωph exp[−1/(λ − µ∗)],
where ωph = ωlog/1.2, and the mass renormalization has
been applied to λ, λ → λ/(1 + λ). We already know
that the multiband version of the BCS equation differs
from this in that λ is substituted by an effective λeff , the
largest eigenvalue of the matrix Λ. The effect of Coulomb
repulsion, introduced in the BCS model via the Coulomb
pseudopotential µ∗, is likewise introduced in its multi-
band version via the matrix µ∗ij . The multiband analog
of the McMillan equation is, therefore,

kTc =
~ωlog

1.2
exp

[
−1

(λ− µ∗)eff

]
, (6)

where (λ− µ∗)eff is defined as the maximum eigenvalue
of the matrix

Λeffij =
Λij − µ∗ij(1 + 0.62

∑
n Λin)

1 +
∑
n Λin

. (7)

This expression gives the results very close to the full
solution of the multiband Eliashberg equations.

The Coulomb pseudopotential matrix is not a con-
stant, as it is sometimes believed [30]. First of all, al-
ready the bare pseudopotential matrix, µij , is not uni-
form. Indeed, it is formally defined as 〈〈VC〉〉ij Nj (where
VC is the screened Coulomb interaction, and the aver-
aging is over the corresponding Fermi surfaces), and as
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had been noticed, for instance, by Agtergerg et al in
another compound [63], when different bands have dif-
ferent orbital character, the Coulomb matrix elements
between these bands are suppressed compared to intra-
band matrix elements. Jepsen and Andersen [64] esti-
mated this effect, using the tight-binding LMTO method
and found the ratio between 〈〈VC〉〉σσ, 〈〈VC〉〉ππ and
〈〈VC〉〉σπ to be ≈3:2.5:1. Furhermore, any anisotropy
in bare pseudopotential is further enhanced in the renor-
malized µ∗ij . In the one-band case µ is renormalized as
µ∗ = [µ/(1 + µ log(W/ωlog))], where W is a characteris-
tic electronic frequency (of the order of the bandwidth
or plasma frequency). For a multiband case we have a
matrix equation, which is a natural extension of the stan-
dard procedure [65]

µ∗ij = µij −
∑
n

µin log(Wn/ωc)µ∗nj . (8)

It is easy to show that renormalization enhances any
nonuniformity in µ; indeed, assuming µσσ = µππ =
αµσπ, (α > 1), and µσσ log(Wσ/ωc) = µππ log(Wπ/ωc) =
L, we obtain α∗ = α + (α − 1/α)L. From the ratios of
〈〈VC〉〉’s above, α ∼ 2.3, and L for MgB2 is of the order
of 0.5 - 1, so for µ∗ij it holds that µ∗σσ = µ∗ππ ∼ 4µ∗σπ,

The fact that the matrix µ∗ij is approximately diagonal
is of utmost importance. Various calculations [10,29,30]
differ in details, but all agree that the interband electron-
phonon coupling constant is 0.15-0.2. Since the order
parameter in the π band is induced by the σ band (ex-
cept for the very low temperature), if a Coulomb re-
pulsion offsets most of the interband coupling, the in-
duced gap becomes vanishingly small. If µ∗σπ were of
the order of µ∗ii ≈ 0.1, the gap ratio ∆σ/∆π would be
much larger than the observed ratio of approximately
3. It is worth mentioning that this is in direct con-
tradiction with a popular misconception that “the su-
perconducting properties of MgB2 are not very sensitive
to µ∗” [30]; they are not only in the one-band picture.
To demonstrate this, we performed [64] 2x2 Eliashberg
calculations using the electron-phonon interaction from
Ref. [30]. Although the authors of Ref. [30] do not break
down their results for the electron-phonon coupling in a
2-band form, which would have made them easier to an-
alyze, one can find the 2x2 matrix corresponding to their
calculations by integrating the λ(k,k′) distribution de-
picted in their graphs (Table II). It appeared that with
µ∗(ωc)=0.12, used in Refs. [30], the ratio ∆σ/∆π at zero
temperature is 4.3 and the critical temperature Tc = 45
K. On the other hand, calculations with a diagonal ma-
trix, µ∗σπ = 0, µσσ : µππ = Nσ : Nπ, produced Tc = 39 K
and ∆σ/∆π = 3.1.

D. Normal transport

A closer look at normal transport in MgB2 reveals sev-
eral phenomena which are hard to understand. First,
there is a severe violation of the Matthiessen rule: sam-
ples with large residual resistivity tend to have much
stronger temperature dependence of the resistivity than
“clean” samples. Second, optical conductivity does not
seem to obey the Drude-Lorenz law; if one attempts a
Drude-Lorenz fit to experimental spectra, the extracted
plasma frequency is 5 times smaller than expected. Many
researchers believe that these problems are due to ex-
trinsic effects like grain boundaries. While future exper-
iments will clarify this matter, it interesting to observe
that multiband effects can actually explain such observa-
tions rather easily.

The theory of multiband effects in electric transport
has been developed by Allen and co-workers [66]. One
important qualitative statement can be made upfront:
since the kinetic equation in a metal can be solved vari-
ationally with respect to the electric conductivity, giving
a variational freedom for different bands to change their
distribution functions separately should always result in
an increase of the conductivity. In other words, while in
the one-band theory the superconducting, the thermo-
dynamic, and the transport PPC constants are usually
similar (the first two being identical), in the multiband
theory the former is always larger than in the correspond-
ing one-band scenario, and the latter is always smaller.
Quantitatively, one can write down the following formu-
las:

σ = e2
∑
ij

(ρ−1)ij (9)

ρij = tij/[
∑
k

v2
ikδ(εik)][

∑
k

v2
jkδ(εjk)] (10)

tij = toutij − tinij (11)

= δij
∑
kk′n

Pik,nk′v
2
ikδ(εik)δ(εnk′) (12)

−
∑
kk′

Pik,jk′vikvjk′δ(εik)δ(εjk′), (13)

where vik is the electron velocity along the direction of
the current. The physical meaning of these formulas is
just that of the parallel conductors formula, each element
of the matrix ρ−1 representing a separate conductor. If
the scattering probability Pik,jk′ is reasonably isotropic,
averaging over the Fermi surface renders tinij very small.
Neglecting it, and using the standard expressions for the
phonon-limited and impurity parts of Pik,jk′ , we have,
for two bands,

1/ρDC(T ) =
1

4π

(
ω2

pl π

Γπ(T )
+

ω2
pl σ

Γσ(T )

)
, (14)
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Γσ(T ) = γσσ + γσπ +
π

T

∫ ∞
0

dω
ω

sinh2(ω/2T )
×
[
α2

tr(ω)Fσσ(ω) + α2
tr(ω)Fσπ(ω)

]
,

where the plasma frequencies are defined in their usual
way for each Cartesian direction. The disparity of the
two band systems appears here in a trivial way, through
different ω2

pl, and in a non-trivial way, through different
α2

trF (ω) and different γ. As described elsewhere in this
Chapter, the electron-phonon scattering is much stronger
in the σσ channel that in the other channels, and the
impurity scattering is essentially always small in the in-
terband channel; furthermore, it is often much stronger
in the ππ channel than in the σσ channel. The small-
ness of the interband impurity scattering is essential for
the two-gap superconductivity; the sample-dependence
of the intraband γ, especially of the γππ, is important for
the understanding of the temperature dependence of the
normal resistivity. Indeed, it is usually assumed that the
impurity scattering is, in the first approximation, irrel-
evant for the temperature dependence of the resistivity.
It is not necessarily true in a two-band system.

To start with, let us consider a very clean sample,
γij = 0. The in-plane conductivity at T = 0 is defined
by both bands, but mostly by the π band, because it
has a larger plasma frequency. The out-of-plane conduc-
tivity, of course, is defined by the π band only. Closer
to room temperature the contribution of the σ band be-
comes smaller and smaller, because of the strong EPC
scattering in this band. Eventually, the high-T behaviour
is dominated by the π band with its small EPC constant.
Temperature dependence at the high temperature (above
room temperature) is therefore weak. Let us now con-
sider a dirty sample with γππ � γσσ � γσπ. Because of
the strong impurity scattering, π− electrons contribute
very little to superconductivity, so the temperature de-
pendence is defined entirely by the EPC in the σ bands -
and thus is strong. For a more detail discussion of these
issues we refer the reader to the paper [60].

Similar effects are expected in optical conductivity; the
relevant formulas differ from Eq.14 only in the sense that
a frequency dependence of the EPC scattering should
be taken into account in the usual way, and in the first
line Γi(T ) should be substituted by Γi(T )− iω. Nontriv-
ial effects may be expected in the “dirty” regime [67,68]
γππ � γσσ � γσπ. In this regime the Drude peak in
optical conductivity that stems from the π - electrons
broadens, possibly beyond recognition, and manifests it-
self merely as a flat background. Analyzing such a con-
ductivity will uncover only one Drude peak, the one due
to σ - electrons, with a much reduced spectral weight,
compared to the total plasma frequency. Moreover, if
γσσ . ωph ≈ 70 meV, where ωph is the frequency of the
Eg phonon, the Drude peak is further renormalized by
the EPC and its spectral weight is reduced by a factor of
(1+λ). Further discussion can be found in Ref. [67].

V. CONCLUSION

MgB2 is an unusual superconductor. It is not as
far from conventional materials as high-Tc cuprates, or
triplet Sr2RuO4. The pairing symmetry is s, the driving
force is electron-phonon interaction. However, several
factors distinguish MgB2 from such more usual super-
conductors as Nb, Nb3Si, or even (B,K)BiO3, to name a
few. The differences mainly stem from the fact that the
charge carriers in MgB2 fall into two distinctive groups:
π-electrons, similar to those in graphites, and σ-electrons,
which represent highly unusual case of covalent bands
crossing the Fermi level. Only the latter group demon-
strate an anomalously strong interaction, and only with
two phonons with sufficiently small wave vectors.

This leads to a complex of uncommon features in the
band structure, transport properties, and superconduc-
tivity. In particular, the superconducting state is char-
acterized by two distinctively different order parameters.
Special symmetry of electronic states strongly suppresses
the pair scattering by impurities from one band system
to the other, thus making the two-gap superconductiv-
ity surprisingly unsensitive to sample quality. MgB2 ap-
pears to be fairly unique, and, from our point of view, it
is not very likely that this compound can be optimized
by a chemical modification to raise substantially its crit-
ical temperature, as opposed, for example, to high-Tc
cuprates.
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